Найдите значение выражения tg3π8⋅tgπ8+1\displaystyle { \tg{3\pi \over 8}\cdot\tg {\pi \over 8}+1 }tg83π⋅tg8π+1 .
tgα⋅tgβ=tgα+tgβctgα+ctgβ\displaystyle { \tg \alpha \cdot \tg \beta = \frac{\tg\alpha + \tg\beta} {\ctg \alpha + \ctg \beta} }tgα⋅tgβ=ctgα+ctgβtgα+tgβ
tg(π2−α)=ctgα\displaystyle { \tg \left ( \frac{\pi}{2} - \alpha \right ) = \ctg \alpha }tg(2π−α)=ctgα
tgα=1ctgα\displaystyle \tg \alpha = \frac{1}{\ctg \alpha }tgα=ctgα1
(π2−π8)=(4π8−π8)=3π8\displaystyle { (\frac{\pi}{2} -\frac{\pi}{8}) = (\frac{4\pi}{8} -\frac{\pi}{8}) = \frac{3\pi}{8} }(2π−8π)=(84π−8π)=83π
tg3π8⋅tgπ8+1=tg(π2−π8)⋅tgπ8+1=ctgπ8⋅tgπ8+1\displaystyle { \tg \frac{3\pi}{8} \cdot\tg \frac{\pi}{8} +1 = \tg \left ( \frac{\pi}{2} - \frac{\pi}{8} \right ) \cdot\tg {\pi \over 8}+1 =\ctg\frac{\pi}{8} \cdot\tg {\pi \over 8} +1 }tg83π⋅tg8π+1=tg(2π−8π)⋅tg8π+1=ctg8π⋅tg8π+1
1+1=21+1=21+1=2